专业治疗白癜风医院 http://www.txbyjgh.com/机器视觉是指利用相机、摄像机等传感器,配合机器视觉算法赋予智能设备人眼的功能,从而进行物体的识别、检测、测量等功能。按照应用的领域与细分技术的特点,机器视觉进一步可以分为工业视觉、计算机视觉两类,相应地,其应用领域可以划分为智能制造和智能生活两类。机器视觉作为人工智能领域的重要分支,已经协同其他技术开始对社会产生重大影响。虽然人工智能领域内的各个前沿技术存在着不同程度的交叉,难以细分,但依据主要采用的技术类别,可以将人工智能行业分为:深度学习、机器视觉、自然语言处理、语音识别、情境感知计算、模式识别等等。其中,深度学习、机器视觉、自然语言处理是优质企业参与最多的三大领域,也是人们在人工智能领域付诸探索实践最多、获得应用成果最为丰厚的主要领域。在VentureScanner追踪的1,家人工智能公司中,其中有家公司的产品属于深度学习领域,家公司的产品属于机器视觉领域,家公司的产品属于自然语言处理领域。其中深度学习领域初创公司累计获得20亿美元的风险投资,机器视觉领域初创公司其次,累计获得9.6亿美元风险投资。深度学习、机器视觉、自然语言处理这三大方向是计算机智能化发展的三大功能,分别代表着教会机器思考、教会机器观察外界、教会机器理解文字。其中,机器视觉作为一种基础功能性技术,是机器人自主行动的前提,能够实现计算机系统对于外界环境的观察、识别以及判断等功能,相当于赋予了机器人视觉,对于人工智能的发展具有极其重要的作用。近年来,国际巨头纷纷在机器视觉领域进行收购行动,提前在这一领域进行布局,抢占人才、技术、资源的优势。涉及未来生活智能化的各个领域,如无人驾驶汽车、无人机等自主移动机器人领域、消费娱乐等领域、智能制造领域等。一方面体现了机器视觉技术作为一种未来智能化的基础技术,其应用范围十分广泛,另一方面也体现了知名企业对于该技术的重视程度。A.无人驾驶汽车、无人机等自主移动机器人领域1)年,通用10亿美元收购无人驾驶汽车初创公司CruiseAutomation,该公司致力于利用双目摄像头、激光雷达、GPS等传感器实现汽车的自主驾驶。2)年,英特尔正式宣布收购俄罗斯机器视觉公司Itseez,该公司成立于年,已经开发了面向驾驶员辅助系统的软件和服务。此次收购加强了英特尔在电子感知和图像理解领域的能力,有利于公司于汽车和物联网领域的创新。3)年,亚马逊收购了一家12人的欧洲机器视觉团队,该团队所掌握的技术将用于亚马逊的无人机送货PrimeAir项目,以实现无人机自主避障到达目的地。4)年,福特收购以色列机器视觉和机器学习公司SAIPS,该公司开发的图像和视频算法解决方案、深度学习、信号处理及分类技术,能够帮助福特的无人驾驶汽车学习和适应周围的环境视觉识别是机器与外界交互的前提。在未来,基于机器视觉的定位、避障、导航技术将是自主移动式机器人的必备基础功能之一,而其较低的生产应用成本也将成为该技术应用的相对优势之一。B.智能制造领域谷歌曾收购IndustrialPerception,该公司致力于研究用于工业机器人的3D视觉识别技术,能够准确对物体进行分类,可以使工业机器人对不同形状的物体进行精准的货物装卸。年2月,埃斯顿发布公告称拟使用万欧元(约合万人民币)收购意大利EuclidLabsSRL,持有其20%股权,并计划于年将持股比例增加至51%。该公司是一家掌握3D机器视觉技术的自动化生产线解决方案提供商。图4:埃斯顿入股的EuclidLabs研发的随机仓拾取系统C.消费、娱乐等领域1)年,俄罗斯一家面部识别技术公司VisionLabs获得万美元融资,并与Facebook、谷歌合作,开发出了一个开源计算机视觉平台,面向零售行业客户提供一种FACE_IS解决方案,可以识别消费者面部后销售个性化产品。2)年,移动设备芯片巨头ARM收购斥资3.5亿美元收购英国嵌入式计算机视觉技术公司Apical,该公司的图像处理技术已运用在全球15亿智能手机和超过3亿台无线监视器等装置中。3)年9月,英特尔宣布收购机器视觉公司Movidius,该公司可以提供低功耗机器视觉芯片,而且已于谷歌、联想、大疆等公司签订协议,为无人机、安保摄像头、VR/AR头盔等设备提供技术服务。该公司已成立8年,融资总额达到8,万美元。图5:VisionLabs面向零售行业客户提供的FACE_IS解决方案由于该领域视觉技术功能的多样性,创业者于该领域进行了广泛的探索与创新,此前于该领域的初创型机器视觉技术团队的收购非常频繁。例如,Twitter收购了基于度学习的机器视觉公司Madbits,以实现自主理解图片内容的功能;雅虎收购LookFlow和IQEngine,以增强Flickr的搜索及内容发现体验;谷歌收购图像识别公司Moodstock以及人脸识别公司Viewdle等;高通公司收购基于图像识别的移动搜索公司Kooaba等等。此类初创型公司的收购,对于已经占据资金优势的知名公司而言,是一种获取人才、技术以及成熟产品的高效途径。特性分析:三方面优势树立机器视觉的“重中之重”一般而言,包括无人驾驶汽车、服务机器人等智能机器人拥有以下几个系统:感知系统,外界信息的关键入口,通过传感器接收来自外部环境的信息,从而达到与外界的交互;计算处理系统,对收集的信息进行计算处理并根据算法制定决策,从而实现相应功能;控制执行系统,将计算处理系统输出的信号通过各种控制器执行器实现。智能装备的输入端有两个来源:一个是人工输入的设置参数,一个是通过自身的传感器组成的感知系统从外界环境获得的信息。人工输入的参数反映着使用者基于自身使用目的和预期,对于智能设备的设置;感知系统输入的数据反映着智能设备通过感知外界环境获得的有利于设备运转的信息。因此,感知系统的重要性可见一斑,起是智能设备除人工干预以外的唯一输入,也是智能设备能够自主获得信息、自主判断、自主行动的基础。智能装备的五大系统及其数据输入感知系统可以使智能机器人拥有多种人类仿生式的“感觉”,对于智能机器人而言,对外界环境的感觉中,目前能够实现且功能意义比较重要的主要有视觉、位置觉、速度觉、力觉、触觉等。其中,机器视觉技术可以实现智能机器人的视觉功能以及部分位置觉的功能,回答“是什么”和“在哪里”的问题。从目前感知技术的研发现状来看,机器视觉已经成为智能机器人感知技术中最重要的技术之一,具有很多其他技术无法比拟的优势——从应用方面来讲,其功能覆盖范围极其广泛;从技术方面来讲,机器视觉的识别功能具有独特性;从硬件成本方面来讲,相对低廉的硬件具有经济性,不会对最终产品的成本构成形成太大成本压力。机器视觉在应用方面具有广泛性应用广泛:高度扩展应用属性可满足不同诉求作为一种给机器人带来视觉功能的关键技术,机器视觉应用广泛,是机器人与外界交互与自主行动的前提,而与外界交互、自主行动这两大功能正是体现未来智能装备智能化特点的两大主要功能。从工业视觉到计算机视觉,从人机交互到自动驾驶,从虚拟现实到物体自动识别,从智能安防到医学领域,机器视觉都能作为核心技术模块充当着重要输入的角色。机器视觉扩展性强,除能满足智能制造的定位、测量、检测等功能需求以外,还在诸如扫地机器人、无人驾驶、新兴服务机器人、AR等智能生活领域起着极其重要的功能性作用,满足其对于视觉功能的不同诉求。此外,机器视觉的细分技术“人脸识别”,想象空间更为广阔,可应用于身份识别、消费、客户管理、智能安防等更多领域。机器视觉应用于工业自动化领域,可以实现产品的检测、测量、识别以及工业机器人的定位引导等功能。其中检测功能,主要为工件的瑕疵和色彩检测、部件的有无检测、目标位置和方向检测等;测量功能,主要为部件的尺寸和容量检测,预设标记的测量(如孔位到孔位的距离)等;识别功能不同于其他领域,主要为标准条形码、
转载请注明:
http://www.aideyishus.com/lkzp/7531.html